
http://www.cit.ie

Detecting Link Fabrication Attacks
in Software-Defined Networks

Dylan Smyth
Sean McSweeney
Donna O’Shea
Victor Cionca

August 2nd 2017

Presentation Scope

▪ SDN Definition

▪ Link Discovery in SDN

▪ The Link Fabrication Attack

▪ Detecting the Attack

▪ Evaluation

▪ Conclusion

2

Software-Defined Networking (SDN)

[1] https://www.opennetworking.org/sdn-resources/sdn-definition 3

Link Discovery in SDN

▪ Controllers need an idea of the network topology

▪ Link Layer Discovery Protocol (LLDP)

▪ LLDP used by
▪ OpenDaylight
▪ ONOS
▪ Floodlight
▪ HP VAN
▪ ...

4

Link Discovery in SDN

▪ Controller sends an LLDP frame to each network switch as
an OF ‘packet-out’ message

5

Link Discovery in SDN

▪ The frame is flooded out all switch ports

6

Link Discovery in SDN

▪ Switches send received LLDP frames to the controller as an
OF ‘packet-in’ message

7

Link Discovery in SDN

▪ Controller understands links from returned LLDP frames

8

The Link Fabrication Attack

▪ LLDP frames are trusted to be correct

9

The Link Fabrication Attack

▪ By taking advantage of this a link can be ‘Fabricated’

10

The Link Fabrication Attack

▪ Enables an attacker to perform Man-in-the-Middle attacks

11

The Link Fabrication Attack

12

The Link Fabrication Attack

▪ Generation-type
▪ Crafted LLDP frame is sent into the network

12

The Link Fabrication Attack

▪ Generation-type
▪ Crafted LLDP frame is sent into the network

▪ Replay-type

▪ Legitimate frame is captured and replayed (resent) several times

12

The Link Fabrication Attack

▪ Generation-type
▪ Crafted LLDP frame is sent into the network

▪ Replay-type

▪ Legitimate frame is captured and replayed (resent) several times

▪ Relay-type

▪ Legitimate frame is captured and immediately forwarded back into
the network

12

The Link Fabrication Attack

▪ Generation-type
▪ Crafted LLDP frame is sent into the network

▪ Replay-type

▪ Legitimate frame is captured and replayed (resent) several times

▪ Relay-type

▪ Legitimate frame is captured and immediately forwarded back into
the network

12

The Link Fabrication Attack

▪ Generation-type Solved: LLDP frame authentication
▪ Crafted LLDP frame is sent into the network

▪ Replay-type

▪ Legitimate frame is captured and replayed (resent) several times

▪ Relay-type

▪ Legitimate frame is captured and immediately forwarded back into
the network

12

The Link Fabrication Attack

▪ Generation-type Solved: LLDP frame authentication
▪ Crafted LLDP frame is sent into the network

▪ Replay-type Solved: Unique value for each frame

▪ Legitimate frame is captured and replayed (resent) several times

▪ Relay-type

▪ Legitimate frame is captured and immediately forwarded back into
the network

12

The Link Fabrication Attack

▪ Generation-type Solved: LLDP frame authentication
▪ Crafted LLDP frame is sent into the network

▪ Replay-type Solved: Unique value for each frame

▪ Legitimate frame is captured and replayed (resent) several times

▪ Relay-type Not Solved

▪ Legitimate frame is captured and immediately forwarded back into
the network

12

The Link Fabrication Attack

13

The Link Fabrication Attack

13

The Link Fabrication Attack

13

The Link Fabrication Attack

13

Detecting The Attack

▪ Detect fabricated link using link latency

▪ Shown to be possible by previous work [2]

▪ Our work explores this further

[2] X. Wang, N. Gao, L. Zhang, Z. Liu, and L. Wang, “Novel mitm attacks on security protocols in sdn: A feasibility
 study,” in Information and Communications Security, Springer, 2016. 14

Detecting The Attack

▪ Fabricated link is not physically the same as normal links

15

Detecting The Attack

▪ More links and more hops

16

Detecting The Attack

▪ Theoretically, the latency should be different

17

Detecting The Attack

▪ LLDP mechanism is used to collect link latency

▪ Monitor link latency at the controller

▪ Compare latency of new links with a baseline latency for
benign links

18

Detecting The Attack

▪ LLDP mechanism is used to collect link latency

▪ Monitor link latency at the controller

▪ Compare latency of new links with a baseline latency for
benign links

▪ Problem with this...

19

Detecting The Attack

▪ Latency can vary depending on network traffic

20

Detecting The Attack

▪ Latency can vary depending on network traffic

▪ Solution:

▪ Maintain a static baseline latency

▪ Isolate new links and collect a ‘clean’ latency (vetting period)

▪ Use statistical tests to check if the new link fits the profile of a
benign link

▪ If the link is ok allow the controller to use it as a path,
Otherwise reject it.

20

Detecting The Attack

▪ Implemented Statistical Hypothesis Testing

▪ Steps…
▪ Calculate mean latency for new link (x)

▪ Calculate mean baseline latency (y)

▪ Calculate z-score; Number of standard deviations x is from y

▪ Calculate p-value using a z-score table

▪ p-value indicates probability a new link is a normal link

▪ If p-value < a threshold (e.g. 5%) the link is a fabricated link

21

Evaluation

22

Evaluation

▪ Determine if proposed detection method is appropriate

▪ Test the accuracy of detection

▪ Measure False Positive Rate (when benign link is tested)

▪ Measure False Negative Rate (when fabricated link is tested)

▪ Examine tradeoff between accuracy and vetting period
length

22

Evaluation

▪ Tested the proposed detection method using simulations

▪ Collected latency samples for baseline and attack scenarios

▪ Smaller sample sets were built from collected latencies

▪ Sample sets reflect length of the ‘vetting period’

▪ Set sizes ranged from 2 to 500

▪ Measured False Positive or Negative Rate for each set size

▪ Sample sets were tested against the full baseline set

▪ p-value tested against 4 thresholds; 5%, 10%, 15%, and 20%

23

Evaluation

▪ Testbed:

▪ Alix boards (x2) running Debian and OpenVSwitch

▪ Odroid U3 running Floodlight controller

▪ Raspberry Pis at network hosts

▪ Controller was modified to record latency values

▪ 2500 samples captured for each attack scenario

▪ 2500 samples captured for the network baseline

24

Evaluation

▪ Dual-homed host

▪ Forwarding Using:

▪ Bridging (kernel-space)

▪ Python (User-space)

25

Evaluation

▪ Dual-homed host

▪ Forwarding Using:

▪ Bridging (kernel-space)

▪ Python (User-space)

▪ Out-of-band Connected Hosts

▪ Forwarding Using:

▪ Bridging via wireless Ad-Hoc (kernel-space)

▪ Bridging via wireless infrastructure (kernel-space)

▪ Python via wireless Ad-Hoc (User-space)

25

Results

26

Results

▪ False Positive Rate for a benign link

26

Results

▪ Distribution for dual-homed bridging

27

Results

▪ False Negative Rate for dual-homed bridging

27

Results

▪ Distribution for bridging via out-of-band Ad-Hoc

28

Results

▪ False Negative Rate for bridging via out-of-band Ad-Hoc

28

Results

▪ Distribution for bridging via out-of-band Infra.

29

Results

▪ False Negative Rate for bridging via out-of-band Infra.

29

Results

▪ Distribution for dual-homed Python forwarding

30

Results

▪ Distribution for Python forwarding via Ad-Hoc

30

Results

▪ Samples needed to reduce False Negative Rate > 5%

▪ Samples needed to reduce False Positive Rate

31

Conclusion and Future Work

▪ Link latency can reveal a fabricated link

▪ Designed a solution to detect a fabricated link

▪ Evaluated the accuracy of the solution in simulations

▪ Use alternative statistical tests

▪ Test effectiveness of technique in other scenarios

32

http://www.cit.ie

Thank you

