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Software-Defined Networking (SDN)

[1]  https://www.opennetworking.org/sdn-resources/sdn-definition 3



Link Discovery in SDN

▪ Controllers need an idea of the network topology

▪ Link Layer Discovery Protocol (LLDP) 

▪ LLDP used by
▪ OpenDaylight
▪ ONOS
▪ Floodlight
▪ HP VAN
▪ ...
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Link Discovery in SDN

▪ Controller sends an LLDP frame to each network switch as 
an OF ‘packet-out’ message
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Link Discovery in SDN

▪ The frame is flooded out all switch ports
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Link Discovery in SDN

▪ Switches send received LLDP frames to the controller as an 
OF ‘packet-in’ message
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Link Discovery in SDN

▪ Controller understands links from returned LLDP frames
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The Link Fabrication Attack

▪ LLDP frames are trusted to be correct
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The Link Fabrication Attack

▪ By taking advantage of this a link can be ‘Fabricated’
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The Link Fabrication Attack

▪ Enables an attacker to perform Man-in-the-Middle attacks
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The Link Fabrication Attack
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The Link Fabrication Attack

▪ Generation-type
▪ Crafted LLDP frame is sent into the network
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The Link Fabrication Attack
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The Link Fabrication Attack

▪ Generation-type Solved: LLDP frame authentication
▪ Crafted LLDP frame is sent into the network

▪ Replay-type Solved: Unique value for each frame

▪ Legitimate frame is captured and replayed (resent) several times

▪ Relay-type Not Solved

▪ Legitimate frame is captured and immediately forwarded back into 
the network 
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The Link Fabrication Attack
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The Link Fabrication Attack
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The Link Fabrication Attack
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The Link Fabrication Attack
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Detecting The Attack

▪ Detect fabricated link using link latency

▪ Shown to be possible by previous work [2]

▪ Our work explores this further

[2] X. Wang, N. Gao, L. Zhang, Z. Liu, and L. Wang, “Novel mitm attacks on security protocols in sdn: A feasibility 
     study,” in Information and Communications Security, Springer, 2016. 14



Detecting The Attack

▪ Fabricated link is not physically the same as normal links
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Detecting The Attack

▪ More links and more hops
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Detecting The Attack

▪ Theoretically, the latency should be different
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Detecting The Attack

▪ LLDP mechanism is used to collect link latency 

▪ Monitor link latency at the controller

▪ Compare latency of new links with a baseline latency for 
benign links
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Detecting The Attack

▪ LLDP mechanism is used to collect link latency 

▪ Monitor link latency at the controller

▪ Compare latency of new links with a baseline latency for 
benign links

▪ Problem with this...
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Detecting The Attack

▪ Latency can vary depending on network traffic
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Detecting The Attack

▪ Latency can vary depending on network traffic

▪ Solution:

▪ Maintain a static baseline latency

▪ Isolate new links and collect a ‘clean’ latency (vetting period)

▪ Use statistical tests to check if the new link fits the profile of a 
benign link

▪ If the link is ok allow the controller to use it as a path,
Otherwise reject it.
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Detecting The Attack

▪ Implemented Statistical Hypothesis Testing

▪ Steps…
▪ Calculate mean latency for new link (x)

▪ Calculate mean baseline latency (y)

▪ Calculate z-score; Number of standard deviations x is from y

▪ Calculate p-value using a z-score table

▪ p-value indicates probability a new link is a normal link

▪ If p-value < a threshold (e.g. 5%) the link is a fabricated link
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Evaluation
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Evaluation

▪ Determine if proposed detection method is appropriate 

▪ Test the accuracy of detection

▪ Measure False Positive Rate (when benign link is tested)

▪ Measure False Negative Rate (when fabricated link is tested)

▪ Examine tradeoff between accuracy and vetting period 
length
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Evaluation

▪ Tested the proposed detection method using simulations

▪ Collected latency samples for baseline and attack scenarios

▪ Smaller sample sets were built from collected latencies

▪ Sample sets reflect length of the ‘vetting period’

▪ Set sizes ranged from 2 to 500

▪ Measured False Positive or Negative Rate for each set size

▪ Sample sets were tested against the full baseline set 

▪ p-value tested against 4 thresholds; 5%, 10%, 15%, and 20% 
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Evaluation

▪ Testbed:

▪ Alix boards (x2) running Debian and OpenVSwitch

▪ Odroid U3 running Floodlight controller

▪ Raspberry Pis at network hosts

▪ Controller was modified to record latency values

▪ 2500 samples captured for each attack scenario

▪ 2500 samples captured for the network baseline
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Evaluation

▪ Dual-homed host

▪ Forwarding Using:

▪ Bridging (kernel-space)

▪ Python (User-space)
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Evaluation

▪ Dual-homed host

▪ Forwarding Using:

▪ Bridging (kernel-space)

▪ Python (User-space)

▪ Out-of-band Connected Hosts

▪ Forwarding Using:

▪ Bridging via wireless Ad-Hoc (kernel-space)

▪ Bridging via wireless infrastructure (kernel-space)

▪ Python via wireless Ad-Hoc (User-space)
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Results
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Results

▪ False Positive Rate for a benign link 
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Results

▪ Distribution for dual-homed bridging 
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Results

▪ False Negative Rate for dual-homed bridging 
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Results

▪ Distribution for bridging via out-of-band Ad-Hoc 
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Results

▪ False Negative Rate for bridging via out-of-band Ad-Hoc 
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Results

▪ Distribution for bridging via out-of-band Infra. 
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Results

▪ False Negative Rate for bridging via out-of-band Infra. 
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Results

▪ Distribution for dual-homed Python forwarding 
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Results

▪ Distribution for Python forwarding via Ad-Hoc 
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Results

▪ Samples needed to reduce False Negative Rate > 5%

▪ Samples needed to reduce False Positive Rate 
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Conclusion and Future Work

▪ Link latency can reveal a fabricated link

▪ Designed a solution to detect a fabricated link 

▪ Evaluated the accuracy of the solution in simulations

▪ Use alternative statistical tests

▪ Test effectiveness of technique in other scenarios
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